Project

Using Coupled Model Intercomparison Project Phase 5 (CMIP5) and CMIP3 data, we are developing a range of projections for the Eastern U.S.  We are also developing extreme event projections for stakeholder-relevant metrics (e.g., days over 90 °F, days below 32 °F, and days with over 1 inch of precipitation) based on CMIP5 models and North American Regional Climate Change Assessment Program (NARCCAP) dynamical downscaling.  We are also evaluating the performance of these models over historical time periods. Current research thrusts include emphasis on extreme heat stress (heat plus humidity) events and the relationship between extreme minimum temperatures and Southern Pine Beetle range expansion in the Northeast U.S.   We are finding that small changes in average conditions are associate with large changes in the frequency and intensity of extreme events

Project

The purpose of the project was to conduct an extensive search for both published and ongoing research that, in general, deals with climate change and agriculture in a water quality context for the Eastern Tallgrass Prairie and Big Rivers Landscape Conservation Cooperative (LCC) and Upper Midwest and Great Lakes LCC. The search was two-fold; one portion of the search dealt with an on-line literature search for published peer-reviewed articles for the time period of 2000 (sometimes slightly earlier depending on the relative degree of the publication’s relevance to the topic) to present. The other portion of the search dealt with contacting USGS Water Science Centers and state institutions requesting information on current research projects dealing with this topic that have not yet been published or are currently in publication, and response to these requests has been varied

Illinois cornfield - Credit: Jeff Sharp
Project

This project facilitated coordination among the scientific community to provide a comparison of existing habitat classification and mapping products within the footprint of the Northeast Climate Adaptaion Science Center (NE CASC). This study also provided an evaluation of habitat vulnerability to climate change within the region and recommendations for needed improvement in habitat mapping products for the future

Project

Our goal was to develop a framework to identify demographic sensitivities and assess the vulnerability of grassland bird species to future climate change. To do so, we developed a strong partnership among managers and researchers to understand how climate change might impact the conservation and management planning of grassland birds throughout the NE CASC region and identify potentially vulnerable species. Using input from managers, we focused our efforts on two grassland indicator species of high conservation interest: Henslow’s Sparrows and Bobolinks. We developed spatially-explicit and temporally dynamic species distribution models for these indicator species and evaluated the effects of past and future climate on their populations. Finally, we studied how weather and extreme events (e.g., drought and flooding) effects the breeding success of grassland birds across North America

Project

We are investigating the effects of climate on multiple aspects of bird demography, including nest success, per nest productivity, juvenile survival, adult survival, and species viability.  We are using a long term data set on bird nesting success and new and existing data on juvenile and adult survival to discover climate effects on productivity and we are developing modeling approaches to predict regional species viability. This work discovers direct and indirect effects of climate on bird demographics to infom vulnerability assessments and conservation planning. We are actively working with the Gulf Coast Plains and Ozarks LCC and the Central Hardwoods All Bird Joint Venture to ensure our results are useful for conservation planning in the region. Our results will be used to guide climate adaptation planning and management across the region

Project

This project addresses a complex local scale conservation problem: managing the impacts associated with sea level rise and coastal flooding on migratory waterbirds and their habitat.  Decisions made by a conservation manager are complicated by three elements that can be expected to occur in almost any of these management situations.  Interactions among dynamic physical and biological processes affect both waterbirds and their habitat and food resources; these processes operate at local to flyway scales and are challenging to represent and analyze.  These natural physical and biological systems are coupled with human systems; decisions made by nearby landowners or jurisdictions can have an impact on conservation resources.  Finally, decisionmakers are still developing the experience and expertise to perceive, understand, and deal with the implications of the first two elements in making timely and effective decisions

Project

Marbled Salamander reproductive failure is tightly linked to vernal pool hydrology and there are concerns that changes in precipitation patterns predicted due to climate change (drier summers and wetter winters with precipitation being more episodic), along with increased summer temperatures (increased evaporation and evapotranspiration) will significantly change current vernal pool hydrology and possibly lead to more frequent incidents of Marbled Salamander reproductive failure. Genetic distance data is being used on marbled salamanders collected from 28 vernal pools in western Massachusetts to investigate the landscape resistance of different land cover types and surfaces derived from digital elevation.  This analysis will allow us to infer what surfaces best describe the overall genetic pattern and movement of individuals across the landscape

Project

The number of fish collected in routine monitoring surveys often varies from year to year, from lake to lake, and from location to location within a lake.  Although some variability in fish catches is expected across factors such as location and season, we know less about how large-scale disturbances like climate change will influence population variability.  The Laurentian Great Lakes in North America are the largest group of freshwater lakes in the world, and they have experienced major changes due to fluctuations in pollution and nutrient loadings, exploitation of natural resources, introductions of non-native species, and shifting climatic patterns.  In this project, we analyzed established long-term data about important fish populations from across the Great Lakes basin, including from Oneida Lake in NY, Lake Michigan, and the Bay of Quinte in Lake Ontario

Yellow perch. Photo: Solomon David
Project

Appropriate ecological indicators of climate change can be used to measure concurrent changes in ecological systems, inform management decisions, and potentially to project the consequences of climate change. However, many of the available indicators for North American birds do not account for imperfect observation. We propose to use correlated-detection occupancy models to develop indicators from the North American Breeding Bird Survey data. The indicators will be used to test hypotheses regarding changes in range and distribution of breeding birds. The results will support the Northeast Climate Science Center’s Science Agenda, including the science priority: researching ecological vulnerability and species response to climate variability and change

Riparian birds - Credit: Joseph Fontaine
Project

USFWS Landscape Conservation Cooperatives (LCCs) throughout the Mississippi River Basin (MRB) have identified high nutrient runoff, a major contributor to Gulf hypoxia, and declines in wildlife populations (especially grassland and riparian birds), as conservation challenges requiring collaborative action. This project developed a spatial decision support system (DSS) to address these issues. The DSS was designed to identify MRB watersheds where application of conservation practices can (1) reduce nutrient export to the Gulf hypoxia zone and (2) enhance conservation for grassland and riparian birds, based on (3) identifying landowners willing and capable of implementing these practices. The DSS identified appropriate conservation practices to be implemented, and quantified resulting benefits for both nutrient export and bird habitat. The DSS  also enabled analyses of whether landowner willingness to implement desired practices was affected by perceptions of climate extremes

Subscribe to Federal agencies