Project

Historical climate data for the Midwestern U.S. show substantial regional variability in the occurrence of extreme rainfall events.  Climate projections for the region based on both statistically downscaled General Circulation Models and Regional Climate Models show significant inter-model variability in the magnitude and frequency of extreme rainfall events.  As a result, these climate projections cannot be used alone to adaptively manage water resources in a changing climate.  We believe that storm transposition provides an effective way to evaluate the vulnerability from extreme rainfall and flooding. We have reconstructed the 2008 storm that caused catastrophic damage across parts of south-central Iowa and Wisconsin.  We are currently using an existing hydrodynamic model of the Yahara Lakes (http://infosyahara.org/) to estimate the extent of damage that would have occurred had the storm been centered over the lakes

Project

The one-dimensional Simultaneous Heat and Water (SHAW) model was used to simulate two continuous 29-year periods representing historical (1970-1999) and future (2040-2069) climate conditions in southern Wisconsin, based on downscaled GCM data from the North American Regional Climate Change Assessment Program (NARCCAP). Modeling showed that warmer winter and spring temperatures lead to a decrease in runoff and a commensurate increase in recharge. Additional modeling with the frost portion of the model disabled confirmed the importance of soil frost formation to the results. These results held across different climate models and a wide range of soil types. Groundwater and stream baseflows are critical to many water resource issues (e.g., water supply, wastewater discharge permitting,  fisheries, groundwater flooding). In the midwestern U.S

Subscribe to NOAA - Sectoral Applications Research Program