Project

This project seeks to implement the recommendations included in Science Theme 6: "Impacts of climate variability and change on cultural resources" of the NECASC Strategic Science Agenda as a baseline for future efforts in the Northeast region. Tribal nations (Tribes) in the Northeast region face different challenges and opportunities regarding climate change impacts. Each Tribe is unique in terms of its cultural, economic, geographic, jurisdictional, social, and political situation. As sovereign governments exercising self-determination, Tribes will have greater capacity to adapt if they are able to determine how climate science research can serve their governance priorities. Fulfilling the Theme 6 recommendations of the NECSC Strategic Science Agenda, then, requires a project that respects the uniqueness and self-determination of Tribes in the Northeast region

Project

This project developed a predictive model for estimating fire frequency based on theories and data in physical chemistry, ecosystem ecology, and climatology.  We applied this model to produce maps of fire frequency under current climate and several climate warming scenarios across the United States.  Results of the project provide information on fire frequency under alternative climate scenarios, information needed to parameterize forest landscape change models. This work provides baseline parameters needed for modeling landscape change under alternative climate scenarios, and the immediate use will be by researchers at the University of Missouri. Ultimately this will lead to tools that will be used by a wide range of stakeholders concerned with management of forests for climate adaptation

Project

This project investigated the effects of climate on multiple aspects of river hydrology, including the interaction with expanding beaver populations in the Northeast. Our findings suggest that beavers increase water retentions, and sometimes flooding, in rivers which increases nitrogen removal.   Information from this project allows managers and citizen groups to understand how the expansion of beavers will intersect with a changing climate to influence river flooding and freshwater quantity and quality

Project

Stream data for the northeastern U.S. are needed to enable managers to understand baseline conditions, historic trends, and future projections of the impacts of climate change on stream temperature and flow, and in turn on aquatic species in freshwater ecosystems. This project developed a coordinated, multi-agency regional stream temperature framework and database for New England (ME, VT, NH, CT, RI, MA) and the Great Lakes States (MN, WI, IL, MI, IN, OH, PA, NY) by building a community around the efforts of this study. These efforts included 1) compiling metadata about existing or historic stream temperature monitoring locations and networks, 2) developing a web-based decision-support mapping system to display, integrate, and share the collected information, and 3) developing data system capabilities that integrate stream temperature data from several data sources

Project

Using Coupled Model Intercomparison Project Phase 5 (CMIP5) and CMIP3 data, we are developing a range of projections for the Eastern U.S.  We are also developing extreme event projections for stakeholder-relevant metrics (e.g., days over 90 °F, days below 32 °F, and days with over 1 inch of precipitation) based on CMIP5 models and North American Regional Climate Change Assessment Program (NARCCAP) dynamical downscaling.  We are also evaluating the performance of these models over historical time periods. Current research thrusts include emphasis on extreme heat stress (heat plus humidity) events and the relationship between extreme minimum temperatures and Southern Pine Beetle range expansion in the Northeast U.S.   We are finding that small changes in average conditions are associate with large changes in the frequency and intensity of extreme events

Project

Our goal was to develop a framework to identify demographic sensitivities and assess the vulnerability of grassland bird species to future climate change. To do so, we developed a strong partnership among managers and researchers to understand how climate change might impact the conservation and management planning of grassland birds throughout the NE CASC region and identify potentially vulnerable species. Using input from managers, we focused our efforts on two grassland indicator species of high conservation interest: Henslow’s Sparrows and Bobolinks. We developed spatially-explicit and temporally dynamic species distribution models for these indicator species and evaluated the effects of past and future climate on their populations. Finally, we studied how weather and extreme events (e.g., drought and flooding) effects the breeding success of grassland birds across North America

Project

We are investigating the effects of climate on multiple aspects of bird demography, including nest success, per nest productivity, juvenile survival, adult survival, and species viability.  We are using a long term data set on bird nesting success and new and existing data on juvenile and adult survival to discover climate effects on productivity and we are developing modeling approaches to predict regional species viability. This work discovers direct and indirect effects of climate on bird demographics to infom vulnerability assessments and conservation planning. We are actively working with the Gulf Coast Plains and Ozarks LCC and the Central Hardwoods All Bird Joint Venture to ensure our results are useful for conservation planning in the region. Our results will be used to guide climate adaptation planning and management across the region

Project

This project addresses a complex local scale conservation problem: managing the impacts associated with sea level rise and coastal flooding on migratory waterbirds and their habitat.  Decisions made by a conservation manager are complicated by three elements that can be expected to occur in almost any of these management situations.  Interactions among dynamic physical and biological processes affect both waterbirds and their habitat and food resources; these processes operate at local to flyway scales and are challenging to represent and analyze.  These natural physical and biological systems are coupled with human systems; decisions made by nearby landowners or jurisdictions can have an impact on conservation resources.  Finally, decisionmakers are still developing the experience and expertise to perceive, understand, and deal with the implications of the first two elements in making timely and effective decisions

Project

The number of fish collected in routine monitoring surveys often varies from year to year, from lake to lake, and from location to location within a lake.  Although some variability in fish catches is expected across factors such as location and season, we know less about how large-scale disturbances like climate change will influence population variability.  The Laurentian Great Lakes in North America are the largest group of freshwater lakes in the world, and they have experienced major changes due to fluctuations in pollution and nutrient loadings, exploitation of natural resources, introductions of non-native species, and shifting climatic patterns.  In this project, we analyzed established long-term data about important fish populations from across the Great Lakes basin, including from Oneida Lake in NY, Lake Michigan, and the Bay of Quinte in Lake Ontario

Yellow perch. Photo: Solomon David
Project

USFWS Landscape Conservation Cooperatives (LCCs) throughout the Mississippi River Basin (MRB) have identified high nutrient runoff, a major contributor to Gulf hypoxia, and declines in wildlife populations (especially grassland and riparian birds), as conservation challenges requiring collaborative action. This project developed a spatial decision support system (DSS) to address these issues. The DSS was designed to identify MRB watersheds where application of conservation practices can (1) reduce nutrient export to the Gulf hypoxia zone and (2) enhance conservation for grassland and riparian birds, based on (3) identifying landowners willing and capable of implementing these practices. The DSS identified appropriate conservation practices to be implemented, and quantified resulting benefits for both nutrient export and bird habitat. The DSS  also enabled analyses of whether landowner willingness to implement desired practices was affected by perceptions of climate extremes

Subscribe to Research community