Project

A reconnaissance study distinguishes coastal areas of the northeastern U.S. (approx. Virginia to Maine) that will experience an inundation-dominated response to sea-level rise from those that will respond dynamically due to physical and bio-physical sedimentation and erosion processes. Areas that will be dominated by inundation include urban regions of intense development and/or coastal engineering, as well as bedrock coasts. Areas that will respond dynamically include beaches, unconsolidated cliffs, barrier islands, and wetlands. Distinguishing which processes are relevant to sea-level rise impacts in these areas aids prioritization of scientific research and decision support efforts. Also see Dr. Robert Thieler's A Research and Decision Support Framework to Evaluate Sea-level Rise Impacts in the Northeastern U.S. Tools and Products Sea Level Rise Viewer https://coast.noaa.gov/digitalcoast/tools/slr

Project

This research investigated forecast skill in predicting the onset and severity of drought.  One of the unique features of this project was the active engagement of major water supply utilities and an evaluation of how climate informed short-term stream flow forecasts and longer-range climate change forecasts influence the water supply systems.  We engaged with the cities of Boston, New York, Providence, Philadelphia, and Baltimore to explore how operational policies that consider climate change can help them prepare for the future conditions that may be different than in the past, particularly in terms of variability.   In one case, a project, including an evaluation of seasonal-scale hydrologic forecasts for the east coast, was advised by ongoing discussions with the New York City Department of Environmental Protection, the organization responsible for providing the city's drinking water. This was performed with conjunction of CCRUN.

Subscribe to Infrastructure managers