Project

Expanding our knowledge of winter limnology is critical for managing lakes , reservoirs, and all freshwater resources in a future with shorter winters and less lake ice. In temperate latitudes, we have largely ignored winter as a season that impacts ecological processes, and it is unclear what ramifications the loss of lake ice will have on lake ecosystems. This project will combine long-term observational datasets, high-frequency buoy data, and an experimental approach to understanding the role of light availability in under-ice productivity

Project

This project examines how leadership within organizations (e.g., C-suite executives) influences organizational and sectoral responses to climate change. This includes prioritization of climate change responses within and beyond organizational boundaries, climate-oriented organizational leadership within and across sectors (e.g., public health, higher education), and the role of institutional leaders in driving change

Project

Downscaling is the process of making a coarse-scale global climate model into a finer resolution in order to capture some of the localized detail that the coarse global models cannot resolve. There are two general approaches of downscaling: dynamical and statistical. Within those, many dynamical models have been developed by different institutions, and there are a number of statistical algorithms that have been developed over the years. Many past studies have evaluated the performance of these two broad approaches of downscaling with respect to climate variables (e.g., temperature, precipitation), but few have translated these evaluations to ecological metrics that managers use to make decisions in planning for climate change. This study uses maple syrup production as a case study for evaluating how these two downscaling techniques perform in terms of projecting changes in the tapping season

Project

Cold-water fish are disappearing from many midwestern lakes as they warm. This loss is due to a combination of de-oxygenation of the deep waters with heating of the surface waters. Together, these climate-driven changes squeeze the depth distribution of fish that require cold, well-oxygenated water, sometimes eliminating their habitat entirely. We will investigate where this combination of factors has likely caused extirpation of cold-water fishes, and where future warming is most likely to eliminate more populations. In addition to hydrodynamic modeling, we are partnering with genomics experts to assess selection on functional genes associated with surviving temperature or oxygen challenges. The goals of this project are to: Manage cold-water lake fishes. Manage fish species of special concern in the state. Guide pre-emptive efforts to prioritize sites for management interventions

Project

WICCI is a grassroots effort to consolidate information about climate change impacts in Wisconsin.  Its first report, released in 2010, has played a critical role in elevating climate change within dialogue about environmental management across the state, and serves as the go-to resource for agencies, NGOs, and the public.  We are now working to update that document, focusing on new research in aquatic and other ecosystems, as well as case studies of impacts on Wisconsin's ecosystem services. The goals of this project are in part to 1) Compile a synthesis of climate change impacts on people and natural resources of Wisconsin.  2) Provide public education about the seriousness of climate change impacts.  3) Establish accessible and credible reference for policy makers

Project

The timing of major life cycle events (reproduction, flowering, feeding) is set by seasonal environmental cues in many organisms.  Migratory fish in the Great Lakes are largely spring spawners, and they move into tributary rivers as the water warms in March-June.  There is growing evidence that the timing of these migrations is shifting under climate change, creating ever-earlier migrations.  These changes in timing may profoundly change which species are present in rivers at a given time, potentially unraveling critical ecological linkages during the dynamic spring warming period.  We are analyzing historical data on migration timing of six species across the Great Lakes basin, using Bayesian statistical modeling to maximize power to detect shifts from a patchwork of migration records in space and time

Project

The Department of the Interior and the U.S. Geological Survey have made it a priority to train the next generation of scientists and resource managers. The Climate Adaptation Science Centers (CASC) and consortium institutions are working to contribute to this initiative by supporting and building a network of students across the U.S. interested in the climate sciences and climate adaptation. The purpose of this project was to support the development of a national early career communication platform to facilitate and increase information sharing and networking across the CASCs and consortium institutions. This was accomplished by working with the Early Career Climate Forum (ECCF), a CASC-supported science network dedicated to improving research practice through communication and collaboration

Image
ECCF_Flyer copy.jpg
Project

This project seeks to implement the recommendations included in Science Theme 6: "Impacts of climate variability and change on cultural resources" of the NECASC Strategic Science Agenda as a baseline for future efforts in the Northeast region. Tribal nations (Tribes) in the Northeast region face different challenges and opportunities regarding climate change impacts. Each Tribe is unique in terms of its cultural, economic, geographic, jurisdictional, social, and political situation. As sovereign governments exercising self-determination, Tribes will have greater capacity to adapt if they are able to determine how climate science research can serve their governance priorities. Fulfilling the Theme 6 recommendations of the NECSC Strategic Science Agenda, then, requires a project that respects the uniqueness and self-determination of Tribes in the Northeast region

Project

Freshwater discharge is an important driver of coastal ecosystem productivity. We use a variety of approaches from stable isotope assessments of foodwebs to tracking coastal herring migration through estuaries into rivers to understand the freshwater to saltwater linkages in food webs

Project

The hydrologic and biological dynamics of the oligohaline transitional zone, where nutrients and organic matter from the upper water shed first enter an estuary, can significantly impact the biogeochemical cycling and productivity of the entire estuarine ecosystem. We observed a strong influence of freshwater residency time on the contribution of benthic and pelagic production sources in the food web in the upper Parker River. By using long term data we are able to infer how changes in flow may alter the source of production and community composition in the oligohaline transitional zone. As climate change shifts the timing and amount of freshwater inputs to estuaries or results suggest that the source of production to the estuary will also be impacted.Information from this project will allow managers and citizen groups to determine how much freshwater inflow is needed  to sustain productive estuaries

Subscribe to Public