Project

This project is using a combination of long-term data records and recently established large-scale adaptive management studies in managed forests across the Lake States, New England, Intermountain West, and Black Hills to identify forest management strategies and forest conditions that confer the greatest levels of resistance and resilience to past and emerging stressors and their relevance in addressing future global change.  This work represents a broad partnership between scientists from the USFS Northern Research Station, USFS Rocky Mountain Research Station, USGS, University of MN,  University of Maine, and Dartmouth College in an effort to capitalize on over 50 years of data collection on USFS Experimental Forests and Forest Inventory and Analysis plot to evaluate forest adaptation strategies

Project

Water temperatures are warming in lakes and streams, resulting in the loss of many native fish. Given clear passage, coldwater stream fishes can take refuge upstream when larger streams become too warm. Likewise, many Midwestern lakes “thermally stratify” resulting in warmer waters on top of deeper, cooler waters. Many of these lakes are connected to threatened streams. To date, assessments of the effects of climate change on fish have mostly ignored lakes, and focused instead on streams. Because surface waters represent a network of habitats, an integrated assessment of stream and lake temperatures under climate change is necessary for decision-making. This work  informed the preservation of lake/stream linkages, prioritization restoration strategies, and stocking efforts for sport fish. This project employed state-of-the-science methods to model historical and future thermal habitat for nearly ten thousand lakes

NECSC_Story_SportFish.jpg
Project

The Driftless Region is blessed with an exceptional coldwater fishery (native brook trout and non-native brown trout).  Based on statistical modeling, it has been predicted that over the next 50 years brook trout will virtually disappear from the region and areal extent of brown trout will decrease significantly.  However, these predictions do not account for potentially significant increases in groundwater recharge and hence in baseflow as a result of likely increases in fall through spring precipitation and potential decreases in winter frost.  Nor do they account for the fact that baseflow in the Driftless Region is due mainly to thousands of springs, many of which are supply streams with relatively small drainage areas (e.g., less than 10 km2).  Empirical evidence suggests that flow from these springs as well as from in-channel seeps persists at anomalously high rates during droughts, such as the severe drought of 2012

Project

The goal of this project was to identify how winter severity, snowpack, and lake ice could change through the mid- and late-21st century, and how species such as the white-tailed deer and mallard duck will respond. Because currently available climate data is at too coarse a scale to provide information on future conditions for the Great Lakes, researchers transformed these models from a global-scale to a regional-scale. Using these models, researchers found that the region could experience substantial warming, reduced lake ice cover, and increased precipitation, with more precipitation falling as rain than snow, among other changes. 

Project

Historical climate data for the Midwestern U.S. show substantial regional variability in the occurrence of extreme rainfall events.  Climate projections for the region based on both statistically downscaled General Circulation Models and Regional Climate Models show significant inter-model variability in the magnitude and frequency of extreme rainfall events.  As a result, these climate projections cannot be used alone to adaptively manage water resources in a changing climate.  We believe that storm transposition provides an effective way to evaluate the vulnerability from extreme rainfall and flooding. We have reconstructed the 2008 storm that caused catastrophic damage across parts of south-central Iowa and Wisconsin.  We are currently using an existing hydrodynamic model of the Yahara Lakes (http://infosyahara.org/) to estimate the extent of damage that would have occurred had the storm been centered over the lakes

Project

Eastern spruce-fir forest ecosystems are among the most vulnerable to climate change within the continuous US. The goal of this project was to develop tools to identify refugia sites most likely to support spruce-fir forest and its associated high-priority obligate spruce-fir bird species over the long-term under projected climate change scenarios

Red spruce - Credit: Katy Cain, NPS
Subscribe to Wisconsin Department of Natural Resources