Project

Expanding our knowledge of winter limnology is critical for managing lakes , reservoirs, and all freshwater resources in a future with shorter winters and less lake ice. In temperate latitudes, we have largely ignored winter as a season that impacts ecological processes, and it is unclear what ramifications the loss of lake ice will have on lake ecosystems. This project will combine long-term observational datasets, high-frequency buoy data, and an experimental approach to understanding the role of light availability in under-ice productivity

Project

Climate change is shifting the hydrodynamics and temperature of both the Great Lakes and their tributary rivers.  Both hydrology and temperature may play potent roles in mediating the magnitude of watershed nutrient load and their fate upon reaching the lake.  Tributary hydrology reflects the source of water (groundwater vs. surface runoff) and seasonal timing of discharge, while tributary temperature determines the density difference between river and lake water.  Similarly, mixing patterns in these massive lakes strongly influence whether tributary loads remain near the shore or become diluted in the open water, while the thermal profile determines whether inflowing river water is trapped at the surface, sinks to the bottom, or stays at an intermediate depth.  These physical interactions are critical for understanding the ecological impact of tributary loads, and how it is mediated by climate change

Project

This project is developing an on-line platform to enable rapid sharing and cataloging of silviculture case studies documenting adaptive forest management approaches across MI, MN, Ontario, and WI.  The goal of this project is to create a clearinghouse of information for forest managers across the region to disseminate ideas on addressing emerging issues and tracking effectiveness of a given approach.  The Prescription Library will serve as the basis for regional continuing education offerings for natural resource professionals throughout Michigan, Minnesota, Ontario, and Wisconsin. The project initiated in late March 2014 and now shares 27 case studies in adaptive silviculture through the Prescription Library platform. These case studies cover Minnesota, Ontario, and Wisconsin and demonstrate a range of silvicultural approaches to address current and emerging issues related to the sustainable management of forests in the Great Lakes region

Project

Given the increasing impacts of climate change and natural disturbances on forest ecosystems across the US, there is a need for monitoring systems that allow for accurate and rapid detection of historic and future changes in forest area and carbon stocks. This collaborative project between UMN, USFS, and NASA is piloting a Monitoring, Reporting, and Verification (MRV) accounting system that could be used within the context of the National Greenhouse Gas Inventory baseline reporting to the UN Framework Convention on Climate Change. To accomplish this, baseline biomass density and historic data about forest change derived from Landsat and LIDAR information are being combined with USFS Forest Inventory and Analysis monitoring system to provide annual estimates of forest C stock and stock change from 1990 to present for several regions of the US

Project

This project examines the ecological and hydrological impacts of emerald ash borer on black ash-dominated wetlands throughout the Lake States using large-scale experimental studies documenting impacts of black ash mortality on ecosystem processes, wildlife communities, and evaluating potential mitigation and adaptation strategies under future climate and invasion scenarios.  Adaptation strategies being evaluated include the planting of non-host tree species and management techniques to increase levels of compositional and structural complexity within these systems.  Work is also generating maps of the distribution of black ash forest habitats to help prioritize areas for conservation and mitigation in the context of emerald ash borer impacts

Project

This project is using a combination of long-term data records and recently established large-scale adaptive management studies in managed forests across the Lake States, New England, Intermountain West, and Black Hills to identify forest management strategies and forest conditions that confer the greatest levels of resistance and resilience to past and emerging stressors and their relevance in addressing future global change.  This work represents a broad partnership between scientists from the USFS Northern Research Station, USFS Rocky Mountain Research Station, USGS, University of MN,  University of Maine, and Dartmouth College in an effort to capitalize on over 50 years of data collection on USFS Experimental Forests and Forest Inventory and Analysis plot to evaluate forest adaptation strategies

Project

This project aimed to quantify the range in variability in forest dynamics and climate responses for range-margin populations of Pinus banksiana and Picea mariana so as to generate management guidelines for conserving these forests on the landscape in an uncertain climatic future.  These species are the cornerstone for several upland and lowland habitat types on the western edge of the Northeast CSC and are particularly vulnerable to future changes in climate and disturbance regimes.  This project took advantage of extensive dendrochronological and forest community data to determine the drivers and future dynamics of key demographic processes for these tree species

Project

Our project focused on anticipated effects of 21st century climate change on winter severity, snowpack, and lake ice across the Great Lakes Basin and the response of wildlife populations, namely white-tailed deer and dabbling ducks. Winter conditions have changed substantially since the mid-20th century, with rising temperatures, declining lake ice cover, and increased lake-effect snowfall. Nonetheless, due coarse resolution, poor lake representation, and insufficient treatment of lake-effect processes in global climate models, basinwide climate change projections remain uncertain. Changing winter conditions may greatly alter wildlife behavior and survival rates. The primary wintertime stressors for deer are air chill and snow depth, with extreme winters triggering population declines. Snow/ice cover limit foraging by waterfowl, thereby regulating the timing/intensity of migration and their distributions during non-breeding season

Project

The purpose of the project was to conduct an extensive search for both published and ongoing research that, in general, deals with climate change and agriculture in a water quality context for the Eastern Tallgrass Prairie and Big Rivers Landscape Conservation Cooperative (LCC) and Upper Midwest and Great Lakes LCC. The search was two-fold; one portion of the search dealt with an on-line literature search for published peer-reviewed articles for the time period of 2000 (sometimes slightly earlier depending on the relative degree of the publication’s relevance to the topic) to present. The other portion of the search dealt with contacting USGS Water Science Centers and state institutions requesting information on current research projects dealing with this topic that have not yet been published or are currently in publication, and response to these requests has been varied

Image
Illinois cornfield - Credit: Jeff Sharp
Project

This project facilitated coordination among the scientific community to provide a comparison of existing habitat classification and mapping products within the footprint of the Northeast Climate Adaptaion Science Center (NE CASC). This study also provided an evaluation of habitat vulnerability to climate change within the region and recommendations for needed improvement in habitat mapping products for the future

Subscribe to Upper Midwest and Great Lakes LCC