Project

The forests of the Northeastern United States are home to some of the greatest diversity of nesting songbirds in the country. Climate change, shifts in natural disturbance regimes, and invasive species pose threats to forest habitats and bird species in the northeastern United States and represent major challenges to natural resource managers.   Although broad adaptation approaches have been suggested for sustaining forested habitats under global change, it is unclear how effective the implementation of these strategies at local and regional scales will be for maintaining habitat conditions for a broad suite of forest-dependent bird species over time. Moreover, given the diversity in forest stakeholders across the Northeast region, it is unclear if the adaptation science needs for these stakeholders are fully captured by existing adaptation recommendations

Image
Adirondacks, NY - Credit: Alan Cressler
Project

Both lynx and marten occupancy is negatively impacted by competition from bobcats (lynx) and fisher and red fox (martens).Causes of vulnerability and resistance and reslilience strageies for wildlife and fisheries management.  Phase I: Determining causes of vulnerability- Completed The NE CASC has as part of its mission to conduct stakeholder-driven research to understand climate impacts on freshwater resources and land-use change as well as ecosystem vulnerability and species response to climate variability and change.  In the face of increasing temperatures, shifting precipitation patterns, and large uncertainty, natural resource managers need to assess vulnerability of species in order to develop adaptation options and conservation strategies. This research evaluated how shifting climate is directly and indirectly affecting mammal populations in the northeasten U.S

Project

Climate change-driven shifts in distribution and abundance are documented in many species. However, in order to better predict species responses, managers are seeking to understand the mechanisms that are driving these changes, including any thresholds that might soon be crossed. We leveraged the research that has already been supported by the Northeast Climate Adaptation Science Center (NE CASC) and its partners and used the latest modeling techniques combined with robust field data to examine the impact of specific climate variables, land use change, and species interactions on the future distribution and abundance of species of conservation concern. Moreover, we documented biological thresholds related to climate variability and change for critical species in the Northeastern and Midwestern U.S. Our objectives were to identify the primary drivers (e.g

Project

This project is developing an on-line platform to enable rapid sharing and cataloging of silviculture case studies documenting adaptive forest management approaches across MI, MN, Ontario, and WI.  The goal of this project is to create a clearinghouse of information for forest managers across the region to disseminate ideas on addressing emerging issues and tracking effectiveness of a given approach.  The Prescription Library will serve as the basis for regional continuing education offerings for natural resource professionals throughout Michigan, Minnesota, Ontario, and Wisconsin. The project initiated in late March 2014 and now shares 27 case studies in adaptive silviculture through the Prescription Library platform. These case studies cover Minnesota, Ontario, and Wisconsin and demonstrate a range of silvicultural approaches to address current and emerging issues related to the sustainable management of forests in the Great Lakes region

Project

Given the increasing impacts of climate change and natural disturbances on forest ecosystems across the US, there is a need for monitoring systems that allow for accurate and rapid detection of historic and future changes in forest area and carbon stocks. This collaborative project between UMN, USFS, and NASA is piloting a Monitoring, Reporting, and Verification (MRV) accounting system that could be used within the context of the National Greenhouse Gas Inventory baseline reporting to the UN Framework Convention on Climate Change. To accomplish this, baseline biomass density and historic data about forest change derived from Landsat and LIDAR information are being combined with USFS Forest Inventory and Analysis monitoring system to provide annual estimates of forest C stock and stock change from 1990 to present for several regions of the US

Project

This project is using a combination of long-term data records and recently established large-scale adaptive management studies in managed forests across the Lake States, New England, Intermountain West, and Black Hills to identify forest management strategies and forest conditions that confer the greatest levels of resistance and resilience to past and emerging stressors and their relevance in addressing future global change.  This work represents a broad partnership between scientists from the USFS Northern Research Station, USFS Rocky Mountain Research Station, USGS, University of MN,  University of Maine, and Dartmouth College in an effort to capitalize on over 50 years of data collection on USFS Experimental Forests and Forest Inventory and Analysis plot to evaluate forest adaptation strategies

Project

Coldwater stream fishes are widely predicted to move upstream in response to warming downstream river temperatures.  However, in the process they may encounter upstream limits, which are likely to be exacerbated by increased hydrologic variability if upstream locations draining small basins switch from perennial to ephemeral flow, with important but currently unknown implications for coldwater habitat and stream fish populations.  In this project, we will look at the current determinants of upstream limitation for Eastern Brook Trout in several (8-10 large watersheds) throughout their native range, and use hydrologic models and GIS analysis to predict future upstream limits and consequent habitat distributions under climate change scenarios. We have identified key climate-associated drivers of brook trout occupancy, abundance and population dynamics

Project

Coldwater stream habitats are at risk from climate change, but management actions, such as removing barriers to passage and restoring riparian forest canopies, can in some cases help to ameliorate negative impacts.  Our overall goal is to devise and implement decision-support tools to help managers make climate-appropriate management choices.  We are currently working on several different approaches to this problem.  First, we are working to improve stream temperature predictions and incorporate stream thermal resilience into models for prioritizing barrier removal.  Second, we are using remotely-sensed data on riparian forest cover in combination with temperature vulnerability models to help managers target appropriate areas for riparian restoration.  To make the results of both of these efforts readily available to the management community, we have developed a website which incorporates these and other decision-support tools

Project

Spruce-fir forests reach their southern limit in New England and the Upper Midwest, and are predicted by coarse climate envelope models to be greatly reduced or extirpated by climate change in the next century.  However, complex climatology, involving orographic effects and consequent changes in temperature and precip, along with substantial spatial variability, make it imperative that we understand where the most resilient stands are likely to be, and what the effects of these changes mean for spruce-fir associated species.  In this project, we took advantage of long-term surveys at multiple locations across the region to relate wildlife dynamics (elevation distribution and reproductive success, population trends) to interannual variation and long-term change in climate, with the ultimate objective of coupling these relationships to climate models

Subscribe to USDA Forest Service National Forest System