Project

The ability to effectively manage wildlife in North America is founded in an understanding of how human actions and the environment influence wildlife populations. Current management practices are informed by population monitoring data from the past to determine key ecological relationships and make predictions about future population status. In most cases, including the regulation of waterfowl hunting in North America, these forecasts assume that the relationships we observed in the past will remain the same in the future. However, climate change is influencing wildlife populations in many dynamic and uncertain ways, leading to a situation in which our observations of the past are poor predictors of the future. If managers continue to use the existing frameworks to set waterfowl hunting regulations without accounting for climate change, there is the potential for under- or over-harvesting which would negatively affect waterfowl populations and hunters across North America.

This project will lay the theoretical groundwork for incorporating climate change projections into the current adaptive harvest management frameworks used to set U.S. hunting regulations for North American waterfowl. The project team will develop an optimization tool that will allow resource managers to evaluate the potential costs of continuing to use existing models to inform hunting regulations despite evidence of climate change effects on populations. The final product of this work will be a guidance document that summarizes current knowledge about the effects of climate change on waterfowl populations, the properties of resource management policies that account for climate change, and the steps needed to implement such policies. This work will directly support the U.S. Fish and Wildlife Service in their role of setting hunting regulations and will help to ensure sustainable harvest opportunities of these public trust species.

Project

Climate change will have sweeping impacts across the northeast, yet there are key gaps in our understanding about whether species will be able to adapt to this changing environment. This project illuminated local and region-wide changes in forest ecosystems by studying the red-backed salamander, a species that is a strong indicator of forest conditions. This study identified habitat and forest characteristics that improve the resiliency of forest dwelling amphibians and other wildlife to climate change. Further, by studying a foundational species in forest floor ecosystems, others can use the information to make inferences about rare and declining species. This project found evidence that salamanders will be negatively impacted by hotter temperature and drier conditions, both in terms in how well they might survive but also in their ability to move around on the forest floor. With reductions in surface activity, there are less opportunities to forage or find mates

Project

Appropriate ecological indicators of climate change can be used to measure concurrent changes in ecological systems, inform management decisions, and potentially to project the consequences of climate change. However, many of the available indicators for North American birds do not account for imperfect observation. We propose to use correlated-detection occupancy models to develop indicators from the North American Breeding Bird Survey data. The indicators will be used to test hypotheses regarding changes in range and distribution of breeding birds. The results will support the Northeast Climate Science Center’s Science Agenda, including the science priority: researching ecological vulnerability and species response to climate variability and change

Riparian birds - Credit: Joseph Fontaine
Project

There is growing evidence that headwater stream ecosystems are especially vulnerable to changing climate and land use, but their conservation is challenged by the need to address the threats at a landscape scale, often through coordination with multiple management agencies and landowners. This project sought to provide an example of cooperative landscape decision-making by addressing the conservation of headwater stream ecosystems in the face of climate change at the watershed scale. Predictive models were built for critical resources to examine the effects of the potential alternative actions on the objectives, taking account of climate effects and examining whether there were key uncertainties that impede decision making.  Results provide decision analyses that are (1) relevant to the management partners in question; (2) emblematic of landscape-scale cooperative decisions; and (3) sensitive to the practical consequences of climate change

Subscribe to Patuxent Wildlife Research Center