Project

Recent extreme floods on the Mississippi and Missouri Rivers have motivated expansion of floodplain conservation lands. Within Missouri there are more than 85,000 acres of public conservation lands in large-river floodplains. Floodplain lands are highly dynamic and challenging to manage, particularly as future climatic conditions may be highly variable. These lands have the potential to provide valuable ecosystem services like provision of habitat, nutrient processing, carbon sequestration, and flood-water storage that produce economic values in terms of recreational spending, improved water quality, and decreased flood hazards. However, floodplain managers may need tools to help them understand nonstationary conditions on conservation lands. This project worked with floodplain managers to identify the information most needed to understand nonstationary conditions, and to develop tools they can apply to conservation lands to improve decision making

Example floodplain inundation maps
Project

Climate change is expected to alter stream temperature and flow regimes over the coming decades, and in turn influence distributions of aquatic species in those freshwater ecosystems. To better anticipate these changes, there is a need to compile both short- and long-term stream temperature data for managers to gain an understanding of baseline conditions, historic trends, and future projections. Unfortunately, many agencies lack sufficient resources to compile, QA/QC, and make accessible stream temperature data collected through routine monitoring.  Yet, pooled data from many sources, even if temporally and spatially inconsistent, can have great value both in the realm of stream temperature and aquatic response. The NorEaST web portal was developed to serve as a coordinated, multi-agency regional framework to map and store continuous stream temperature locations and data for New England, Mid Atlantic, and Great Lakes States

NECSC one-pager NorEAsT 170428_Page_1.jpg
Project

Historical climate data for the Midwestern U.S. show substantial regional variability in the occurrence of extreme rainfall events.  Climate projections for the region based on both statistically downscaled General Circulation Models and Regional Climate Models show significant inter-model variability in the magnitude and frequency of extreme rainfall events.  As a result, these climate projections cannot be used alone to adaptively manage water resources in a changing climate.  We believe that storm transposition provides an effective way to evaluate the vulnerability from extreme rainfall and flooding. We have reconstructed the 2008 storm that caused catastrophic damage across parts of south-central Iowa and Wisconsin.  We are currently using an existing hydrodynamic model of the Yahara Lakes (http://infosyahara.org/) to estimate the extent of damage that would have occurred had the storm been centered over the lakes

Project

To integrate results of a current condition habitat assessment of stream habitats that accounts for fish response to human land use, water quality impairment, and fragmentation by dams with estimates of future stream habitats that may change with climate.  This was accomplished by 1) Characterization of the current condition of stream fish habitats throughout the NE CASC region based on responses of target fish species to a diverse set of landscape-scale disturbances; 2) Identification of stream reaches predicted to change with climate and likely to change distributions of target fish species throughout the region; and 3) Development of a spatially-explicit web-based decision support viewer (FishTail) showing measures of current landscape condition along with estimates of changes in habitat that may occur with changes in climate. Tools and Products FishTail https://ccviewer.wim.usgs

Project

There is growing evidence that headwater stream ecosystems are especially vulnerable to changing climate and land use, but their conservation is challenged by the need to address the threats at a landscape scale, often through coordination with multiple management agencies and landowners. This project sought to provide an example of cooperative landscape decision-making by addressing the conservation of headwater stream ecosystems in the face of climate change at the watershed scale. Predictive models were built for critical resources to examine the effects of the potential alternative actions on the objectives, taking account of climate effects and examining whether there were key uncertainties that impede decision making.  Results provide decision analyses that are (1) relevant to the management partners in question; (2) emblematic of landscape-scale cooperative decisions; and (3) sensitive to the practical consequences of climate change

Project

This project addressed regional climate change effects on aquatic food webs in the Great Lakes. Project scientists examined Lake Erie as a representative system with a high level of human impact, varying levels of food availability, seasonal hypoxia (low oxygen levels), and spatial overlap of cold- and cool-water fish guilds. In Lake Erie and in large embayments throughout the Great Lakes basin, this situation is a concern for fishery managers, as climate change may worsen oxygen levels and reduce habitat for some species. Researchers examined fish community composition, fine-scale distribution, food availability, diets, and other senses for dominant fishes from study areas with medium-high nutrient levels (Fairport study area), and low nutrient levels (Erie study area). This multi-year database (2011-2013) provides the ability to contrast years with wide variation in rainfall, winter ice-cover, and thermal stratification

Lake Erie - Public domain
Project

This study set out to answer the question: “What data and modeling frameworks are needed to provide scientists reliable, climate-informed, water temperature estimates for freshwater ecosystems that can assist watershed management decision making?”  To accomplish this, the study gathered existing stream temperature data, identified data gaps, deployed stream temperature monitoring devices, and developed and tested a stream temperature model that could be regionalized across the Northeast Climate Science Center domain. Polebitski and colleagues partnered with another NE CSC funded project team, NorEaST-Stream Temperature Web Portal Demonstration and Application, led by Jana Stewart (USGS Wisconsin Water Science Center), to collect data from over 10000 locations across 30 states and contributed by 40 different organizations

Maury River,  Virginia - Credit: Alan Cressler
Project

Eastern spruce-fir forest ecosystems are among the most vulnerable to climate change within the continuous US. The goal of this project was to develop tools to identify refugia sites most likely to support spruce-fir forest and its associated high-priority obligate spruce-fir bird species over the long-term under projected climate change scenarios

Red spruce - Credit: Katy Cain, NPS
Project

The Massachusetts Wildlife Climate Action Tool is designed to inform and inspire local action to protect the Commonwealth’s natural resources in a changing climate. This Tool focuses on providing information for a range of local decision-makers, including conservation practitioners, landowners, municipal agencies, and community leaders, seeking to conduct on-the-ground climate change adaptation efforts. With this tool, users can: Access information on climate change impacts and vulnerabilities of fish and wildlife species and associated habitats; Explore adaptation strategies and actions to help maintain healthy, resilient natural communities based on location and area of interest; and Find additional resources to help guide decision-making and actions

Project

Maple syrup is produced from the sap of sugar maple trees collected in the late winter and early spring. Native American tribes have collected and boiled down sap for centuries, and the tapping of maple trees is a cultural touchstone for many people in the northeast and Midwest. Because the tapping season is dependent on weather conditions, there is concern about the sustainability of maple sugaring as climate changes throughout the region. In spite of this, maple syrup production is increasing rapidly, with demand rising as more people appreciate this natural sweetener.    This project addressed the impact of climate on the production of maple syrup. Informed by the needs of state and federal resource managers, tribal groups, and other maple syrup producers, the research team examined sugar maple’s sap yields coupled with the sugar and biochemical composition of sap throughout the geographic range of sugar maple

Sugar Maple - Credit: Alan Cressler
Subscribe to US Geological Survey (USGS) Science Centers