Project

The Climate Change Response Framework is an example of a collaborative, cross-boundary approach to create a set of tools, partnerships, and actions to support climate-informed conservation and land management. Historically, this effort has focused on the needs of forest managers and forestry professionals. In recent years, however, there has been increasing demand for science and tools to address climate change adaptation in wildlife management and conservation. Not only do wildlife and resource managers need the best available science, it must also be presented in a usable format with feasible options within the purview of an individual manager. The research team first completed a comprehensive review of peer-reviewed studies to summarize what wildlife-related management actions currently exist in climate change adaptation. They then developed and tested a “menu” of climate change adaptation actions that are suitable for wildlife management in terrestrial ecosystems

Project

We worked with stakeholders to develop a series of climate change adaptation management strategies for forests in the Central Hardwoods and Gulf Coastal Plains and Ozarks region. Strategies focused on resistance, resilience, or transition of forests under climate change and vary the types of silvicultural practices considered and where and how much each practice occurs. We implemented strategies in a forest landscape-modeling framework and demonstrated the consequences of these alternative strategies on forest composition and structure in the region. The goal was to provide a large-scale perspective on the potential of forest adaptation strategies to address impacts of climate change on forests

Project

Climate change and the extreme weather associated with it can be a major challenge to landowners and land managers interested in the protection, restoration, recovery, and management of wetlands and wildlife habitats. The Midwest is not only experiencing an increase in average temperatures and precipitation, but also an increase in the frequency of extreme events, such as heat, floods, and drought. Forecasting the potential impacts of the changes over the next 25 to 50 years will be important for decision makers and landowners seeking to minimize the impacts to infrastructure and to the habitats themselves and prepare for the future. By providing maps of watersheds and protected areas at greatest risk of increased flooding, sedimentation and eutrophication, now and in the future, decision makers, landowners and land managers can consider options for modifying resource allocation, management strategies and/or changing infrastructure to provide protection for trust resources

Image
Black River Delta, WI, Public Domain - Credit
Project

Climate change is likely to impact erosion rates, the magnitude and frequency of extreme rainfall/mass wasting events, and the accumulation of sediment in coastal areas. However, long-term rates of erosion and sediment delivery to coastal systems are poorly constrained and there is limited understanding of the relative effects of climate change versus land-use change on these processes. Furthermore, existing instrumental and historical observations are inadequate for constraining the frequency of extreme events and evaluating the potential for changes in the magnitude and frequency of these events through time

Project

As more NE CASC projects come to completion, the opportunity to share research-based outputs to an expanded audience of end users has increased. The translation and application of climate science data and products are paramount to effective on-the-ground adaptation.  Extension staff at land-grant universities have a translational role in providing guidance to municipalities, private landowners, farmers, and other practitioners making natural resource management decisions. They work closely with academics, nonprofits, and state agencies to deliver research-based information and approaches. This project will identify extension partners leading on climate adaptation in our region, provide insight on where and how some of these partners and their stakeholders are using NE CASC products, and deliver any new information

Project

This project studies water systems in a changing climate through the lens of Sustainability Science, which provides a framework where all systems can move endogenously through time with interactions. This study will develop an analytical system for the prediction of outcomes and feedbacks among the climate, biogeochemical, and social systems controlling water quality in the Great Lakes region. The focus will be on the expected impact of climate-change-related extreme events on nutrient loading to the Great Lakes, and the development of management systems that are robust and support adaptation in this context. We will select specific analytical scenarios, such as increased drought, extremes in springtime precipitation, changes in snowmelt patterns, and rapid shifts in human water use. A 50-year retrospective analysis will identify feedbacks and parameterize models to predict future changes, and a prognostic analysis will project impacts for 100 years

Project

There is growing interest in the facilitated movement of plants as a means of conserving or restoring species and habitats, as climate conditions and management goals change. For example, plants might be relocated to support pollinator conservation or the restoration of prairies. Some land managers, in an effort to be proactive in the face of changing environmental conditions, are also considering relocating plants to sites that are considered more similar to anticipated future conditions. However, moving plants can be ecologically and economically risky. It’s possible that pests, pathogens, or contaminant weeds can be inadvertently moved along with the target plant material. In 2016, the noxious weed Palmer amaranth was introduced to Minnesota as a contaminant in seed brought in to improve Monarch butterfly and pollinator habitat. This fast growing weed is capable of reducing soybean yields by 78% and corn yields by 91%, and requires costly resources to fight its spread

Image
Tamarac Refuge, MN, USFWS
Project

Current and future hydrologic variability is a major driver underlying large-scale management and modification of inland waters and river systems. In a climate-altered future, identifying and implementing management actions that mitigate anticipated flow regime extremes will be an important component of climate adaptation strategies. These concerns will be particularly focused on extreme flows (floods and droughts) that have ecological, social, and economic importance, and whose impacts are inversely proportion to their frequency. Climate warming is expected to increase the frequency of extreme precipitation. It is critical for natural resources conservation that responses to these risks incorporate ‘green’ infrastructure which potentially benefit both ecosystems and human infrastructure

Image
Slow the Flow _schematic2.jpg
Project

Climate change-driven shifts in distribution and abundance are documented in many species. However, in order to better predict species responses, managers are seeking to understand the mechanisms that are driving these changes, including any thresholds that might soon be crossed. We leveraged the research that has already been supported by the Northeast Climate Adaptation Science Center (NE CASC) and its partners and used the latest modeling techniques combined with robust field data to examine the impact of specific climate variables, land use change, and species interactions on the future distribution and abundance of species of conservation concern. Moreover, we documented biological thresholds related to climate variability and change for critical species in the Northeastern and Midwestern U.S. Our objectives were to identify the primary drivers (e.g

Project

Connecting people, nature, and science is at the core of the mission of the US Department of the Interior. The National Park Service is playing a leading role in that mission in 2016 by hosting a national BioBlitz on May 20-21 that will have people nationwide recording observations of plants and animals in over 100 national parks. This two-day Citizen Science event will provide outreach and education opportunities for new and previous park visitors to document biodiversity, along with NPS staff and other partners. Furthermore for the first time in BioBlitz history, participants will enter species observations including digital photos into iNaturalist, making observations instantly viewable and organized into a single, geo-referenced database. This event thus provides an unprecedented look at the intersection of biodiversity and people in parks across the country during the same time period

Subscribe to US Geological Survey (USGS) Science Centers