Project

The goal of this project is to identify statistical trends in observed and simulated maximum, minimum and base (mostly groundwater contribution during low flow months) flows in the Northeast Climate Science Center domain during the 20th and 21st century, assess the temporal (annual and seasonal) and spatial distribution of the trends, and evaluate the impact of warmer climates on the statistical properties of streamflows (mean and variance). A secondary goal is to determine what GCMs best represent the observed climatology of the region using statistical metrics. Base and minimum flows are vital for fish ecosystem functioning and for riparian vegetation. Climate projections indicate summers will get warmer and drier in the NE CSC domain which will affect aquatic ecosystems. Larger streamflows peaks will affect existing infrastructure, e.g. bridges, dams, cities)

Project

A reconnaissance study distinguishes coastal areas of the northeastern U.S. (approx. Virginia to Maine) that will experience an inundation-dominated response to sea-level rise from those that will respond dynamically due to physical and bio-physical sedimentation and erosion processes. Areas that will be dominated by inundation include urban regions of intense development and/or coastal engineering, as well as bedrock coasts. Areas that will respond dynamically include beaches, unconsolidated cliffs, barrier islands, and wetlands. Distinguishing which processes are relevant to sea-level rise impacts in these areas aids prioritization of scientific research and decision support efforts. Also see Dr. Robert Thieler's A Research and Decision Support Framework to Evaluate Sea-level Rise Impacts in the Northeastern U.S. Tools and Products Sea Level Rise Viewer https://coast.noaa.gov/digitalcoast/tools/slr

Subscribe to Princeton University