Project

Climate change has impacted and will continue to impact indigenous peoples, their lifeways and culture, and the natural world upon which they rely, in unpredictable and potentially devastating ways. Many climate adaptation planning tools fail to address the unique needs, values and cultures of  indigenous communities. This Tribal Climate Adaptation Menu, which was developed by a diverse group of  collaborators representing tribal, academic, intertribal and government entities in Minnesota, Wisconsin and Michigan, provides a framework to integrate indigenous and traditional knowledge, culture, language and history into the climate adaptation planning process. The Tribal Climate Adaptation Menu is designed to work with the Northern Institute of  Applied Climate Science (NIACS) Adaptation Workbook, and as a stand-alone resource

Project

Water temperatures are warming in lakes and streams, resulting in the loss of many native fish. Given clear passage, coldwater stream fishes can take refuge upstream when larger streams become too warm. Likewise, many Midwestern lakes “thermally stratify” resulting in warmer waters on top of deeper, cooler waters. Many of these lakes are connected to threatened streams. To date, assessments of the effects of climate change on fish have mostly ignored lakes, and focused instead on streams. Because surface waters represent a network of habitats, an integrated assessment of stream and lake temperatures under climate change is necessary for decision-making. This work  informed the preservation of lake/stream linkages, prioritization restoration strategies, and stocking efforts for sport fish. This project employed state-of-the-science methods to model historical and future thermal habitat for nearly ten thousand lakes

NECSC_Story_SportFish.jpg
Project

The goal of this project was to identify how winter severity, snowpack, and lake ice could change through the mid- and late-21st century, and how species such as the white-tailed deer and mallard duck will respond. Because currently available climate data is at too coarse a scale to provide information on future conditions for the Great Lakes, researchers transformed these models from a global-scale to a regional-scale. Using these models, researchers found that the region could experience substantial warming, reduced lake ice cover, and increased precipitation, with more precipitation falling as rain than snow, among other changes. 

Subscribe to Great Lakes Indian Fish & Wildlife Commission