Project

The field of climate adaptation is still getting established, and guidelines and examples for how to manage for climate change on-the-ground are still rare. The concept of climate change refugia, areas buffered from climate change that enable persistence of valued resources, is being discussed as a potential adaptation option in the face of anthropogenic climate change. This project seeks to provide practical guidance for how to operationalize this concept and to work with stakeholders to help prioritize actions to conserve climate change refugia. In addition, I use the tools of ecological and climate modeling and historical field data to test predictions of climate change refugia in the Sierra Nevada of California. Many resource managers and conservation organizations are looking to help their ecosystems, habitats and species adapt to climate change.  Climate change refugia can allow species to persist in the face of warming and changing precipitation regimes

Project

Climate change poses a variety of threats to biodiversity. Most efforts to assess the likely impacts of climate change on biodiversity try to rank species based on their vulnerability under changed environmental conditions. These efforts have generally not considered the ability of organisms to adjust their phenotype to the changing environment. Organisms can do this one of two ways. First, they can adjust their phenotype via non-evolutionary pathways. Second, they can undergo adaptive evolutionary change. We used two interconnected approaches to evaluate thermal adaptation capacity in a cold-water fish species. 1) Using tagging data, we estimated thermal performance curves for wild fish. The curves indicate how fish body growth will respond to changing temperatures. 2) Using genomic approaches, we developed a unified single nucleotide polymorphism (SNP) panel for use across the species’ range to examine adaptive capacity

Genesee River, New York: Credit: Alan Cressler
Subscribe to University of Montana