Project

This project studies water systems in a changing climate through the lens of Sustainability Science, which provides a framework where all systems can move endogenously through time with interactions. This study will develop an analytical system for the prediction of outcomes and feedbacks among the climate, biogeochemical, and social systems controlling water quality in the Great Lakes region. The focus will be on the expected impact of climate-change-related extreme events on nutrient loading to the Great Lakes, and the development of management systems that are robust and support adaptation in this context. We will select specific analytical scenarios, such as increased drought, extremes in springtime precipitation, changes in snowmelt patterns, and rapid shifts in human water use. A 50-year retrospective analysis will identify feedbacks and parameterize models to predict future changes, and a prognostic analysis will project impacts for 100 years

Project

Native communities are among the most vulnerable to climate change due to their small size and limited resources, as well limited voice in American government policy making and our culture.  DOI has declared it a mandatory goal that the agency works to assist tribes with their climate change adaptation needs.  Doing so requires considerable time developing relationships and trust. In addition to engagement through site visits, this project entails providing localized climate summaries (data tables, maps, time series) for tribal communities in the NE CASC footprint as well as engaging them in decision making frameworks such as Scenario Planning

Project

Downscaling is the process of making a coarse-scale global climate model into a finer resolution in order to capture some of the localized detail that the coarse global models cannot resolve. There are two general approaches of downscaling: dynamical and statistical. Within those, many dynamical models have been developed by different institutions, and there are a number of statistical algorithms that have been developed over the years. Many past studies have evaluated the performance of these two broad approaches of downscaling with respect to climate variables (e.g., temperature, precipitation), but few have translated these evaluations to ecological metrics that managers use to make decisions in planning for climate change. This study uses maple syrup production as a case study for evaluating how these two downscaling techniques perform in terms of projecting changes in the tapping season

Project

There is growing interest in the facilitated movement of plants as a means of conserving or restoring species and habitats, as climate conditions and management goals change. For example, plants might be relocated to support pollinator conservation or the restoration of prairies. Some land managers, in an effort to be proactive in the face of changing environmental conditions, are also considering relocating plants to sites that are considered more similar to anticipated future conditions. However, moving plants can be ecologically and economically risky. It’s possible that pests, pathogens, or contaminant weeds can be inadvertently moved along with the target plant material. In 2016, the noxious weed Palmer amaranth was introduced to Minnesota as a contaminant in seed brought in to improve Monarch butterfly and pollinator habitat. This fast growing weed is capable of reducing soybean yields by 78% and corn yields by 91%, and requires costly resources to fight its spread

Tamarac Refuge, MN, USFWS
Project

Forests play a role in air quality by supplying the atmosphere with volatile organic compounds (VOCs), precursors to ozone and aerosols. Different tree types emit different VOCs, each with different capacity to form ozone and aerosols. Therefore, shifts in forest composition may impact ozone and aerosol yields. Climate change is one of the expected drivers of forest change. In particular, the current range boundaries of a variety of species are expected to shift northward. The impacts of these climate-induced shifts in forest composition on air quality, particularly VOC emissions and subsequent ozone and aerosol formation, is little understood. This project aims to explore the relative contribution of shifts in approximately 25 tree species to changes in the VOC, ozone, and aerosol environment using a suite of high-resolution models

Central Hardwoods; Public Domain
Project

All peoples have a right to make meaningful plans for their future. For many Tribes in the northeast region of the United States, trends in the environment such as shifting lake levels, patterns of precipitation and other seasonal cycles pose potential problems. This includes financial burdens on Tribal governments and stresses on Tribal cultural practices such as harvesting medicinal plants and food staples such as wild rice. Consistent with the U.S. federal trust responsibility to Tribes, the NE CASC has key scientific resources for supporting Tribal adaptation planning in light of noted shifts in environmental trends. The primary activity of this project was for the College of Menominee Nation (CMN) Sustainable Development Institute (SDI), in collaboration with Michigan State University (MSU), to facilitate a relationship between 6 Tribes from across the Northeast Region that  produced for each participating Tribe, a set of future climate change scenarios

Subscribe to University of Michigan