Skip to main content

Slowing the Flow for Climate Resilience (SFCR): Reducing Vulnerability to Extreme Floods and Drought Events

Project Leader:
Project Fellows:
Project Investigators:
Keith H. Nislow, UMass Amherst
Linda Deegan, Marine Biological Laboratory
Chris Neill, Marine Biological Laboratory
Chris Caldwell, CMN
Peter McIntyre, University of Wisconsin
Michelle Staudinger, UMass Amherst
Scott Jackson, UMass Amherst
Melissa Ocana, UMass Amherst
Kim Lutz, TNC
+4 more
States:
New Hampshire
Vermont
Massachusetts
Connecticut
+1 more
Status:
Completed

Overview

Current and future hydrologic variability is a major driver underlying large-scale management and modification of inland waters and river systems. In a climate-altered future, identifying and implementing management actions that mitigate anticipated flow regime extremes will be an important component of climate adaptation strategies. These concerns will be particularly focused on extreme flows (floods and droughts) that have ecological, social, and economic importance, and whose impacts are inversely proportion to their frequency. Climate warming is expected to increase the frequency of extreme precipitation. It is critical for natural resources conservation that responses to these risks incorporate ‘green’ infrastructure which potentially benefit both ecosystems and human infrastructure.

An overarching strategy of ‘slow the flow’ is increasing transient and long-term storage in upland/upstream compartments (soils, floodplains, headwaters, beaver impoundments) to increase resilience to both floods and droughts. These alternatives do not only reduce flow variability, they also have the potential to generate substantial benefits for species and ecosystems by restoring floodplain connectivity and converting impervious surfaces to forest cover. Evaluating the potential benefits of green infrastructure on climate resilience presents technical challenges and requires an understanding of the diverse array of stakeholder perspectives and needs. This project assessed the capacity of green infrastructure to provide multiple dimensions of climate resilience, focusing on extreme precipitation (floods and droughts), their immediate consequences (eutrophication of receiving waters), and their implications for major management initiatives (dam removal, stream channel and river habitat restoration). Our objective was to provide decision support, based on the best available science, allowing managers to identify effective strategies for flood and drought resilience in the context of a changing climate, at both local and landscape scales, and along multiple ecological dimensions. This research helped to design climate-resilient landscapes that achieve multiple objectives and serve both ecosystems and human communities. Research efforts were focused on four case study locations (Connecticut River basin and Ipswich River basin in the northeast, Lake Michigan and interior Wisconsin tributaries in the Upper Midwest), but results will be broadly applicable at national and even international levels.

The work was led by the project team consisting of co-investigators from the University of Massachusetts, University of Wisconsin, Marine Biological Laboratory (MBL), College of Menominee Nation (CMN), US Geological Survey and USDA Forest Service. Project partners included The Nature Conservancy (TNC), the US Fish and Wildlife Service, and participating state natural resource agencies.

Presentations

Rob Mooney submitted an abstract for the 2019 IAGLR (Great Lakes Research) and Society for Freshwater Science meetings
McIntyre presentation at SlowTheFlow workshop in Lansing MI, 10 Oct 2018.
Mooney et al., Gloege et al., and Remucal et al. talks at Society for Freshwater Science, Detroit MI, May 2018
Deegan, EPA National Webinar on Nutrient Criteria Development. Presentation at NOAA/EPA regional meeting of restoration ecologists and land managers.  2018
Mooney et al. presentation at the Mississippi River Research Consortium meeting in La Crosse, WI, April 2018.
Mooney et al, Extensive spatiotemporal variation of nutrient concentrations in Lake Michigan's tributaries, Society for Freshwater Science, June 2017;
Mooney (fellow) presented at CASC Fellows meeting in Amherst, MA in May 2017;
Mooney, R. (NE CASC Fellow) presented at the National CSC Student and Early Careers Training in Amherst, MA, November, 2016
+3 more