Shifting hotspots: Climate Change Projected to Drive Contractions and Expansions of Invasive Plant Abundance Habitats
Secondary Title:
Diversity and Distributions
Abstract
Aim: Preventing the spread of range‐shifting invasive species is a top priority for mitigating the impacts of climate change. Invasive plants become abundant and cause negative impacts in only a fraction of their introduced ranges, yet projections of invasion risk are almost exclusively derived from models built using all non‐native occurrences and neglect abundance information. Location: Eastern USA. Methods: We compiled abundance records for 144 invasive plant species from five major growth forms. We fit over 600 species distribution models based on occurrences of abundant plant populations, thus projecting which areas in the eastern United States (U.S.) will be most susceptible to invasion under current and +2°C climate change. Results: We identified current invasive plant hotspots in the Great Lakes region, mid‐Atlantic region, and along the northeast coast of Florida and Georgia, each climatically suitable for abundant populations of over 30 invasive plant species. Under a +2°C climate change scenario, hotspots will shift an average of 213 km, predominantly towards the northeast U.S., where some areas are projected to become suitable for up to 21 new invasive plant species. Range shifting species could exacerbate impacts of up to 40 invasive species projected to sustain populations within existing hotspots. On the other hand, within the eastern U.S., 62% of species will experience decreased suitability for abundant populations with climate change. This trend is consistent across five plant growth forms. Conclusions: We produced species range maps and state‐specific watch lists from these analyses, which can inform proactive regulation, monitoring, and management of invasive plants most likely to cause future ecological impacts. Additionally, areas we identify as becoming less suitable for abundant populations could be prioritized for restoration of climate‐adapted native species. This research provides a first comprehensive assessment of risk from abundant plant invasions across the eastern U.S.