Skip to main content

Rapid tidal marsh development in anthropogenic backwaters

Authors:

Brian Yellen

Publication Type:
Journal Article
Year of Publication:
2021
Secondary Title:
Earth Surface Processes and Landforms
ISSN:
0197-9337, 1096-9837
DOI:
10.1002/esp.5045
Issue:
3
Pages:
554-572
Volume:
46
Year:
2021

Abstract

Tidal marsh restoration and creation is growing in popularity due to the many and diverse sets of services these important ecosystems provide. However, it is unclear what conditions within constructed settings will lead to the successful establishment of tidal marsh. Here we provide documentation for widespread and rapid development of tidal freshwater wetlands for a major urban estuary as an unintended result of early industrial development. Anthropogenic backwater areas established behind railroad berms, jetties, and dredge spoil islands resulted in the rapid accumulation of clastic material and the subsequent initiation of emergent marshes. In one case, historical aerial photos document this transition occurring in less than 18 years, offering a timeframe for marsh development. Accretion rates for anthropogenic tidal marshes and mudflats average 0.8–1.1 and 0.6–0.7 cm year−1, respectively, equivalent to two to three times the rate of relative sea level rise as well as the observed accretion rate at a 6000+ year-old reference marsh in the study area. Paired historical and geospatial analysis revealed that more than half of all the tidal wetlands on the Hudson River were likely triggered by anthropogenic development since the onset of the industrial era, including two-thirds of the emergent cattail marsh. These inadvertently constructed tidal wetlands currently trap roughly 6% of the Hudson River's sediment load. Results indicate that when sediment is readily available, freshwater tidal wetlands can develop relatively rapidly in sheltered settings. The study sites serve as useful examples to help guide future tidal marsh creation and restoration efforts.