Skip to main content
The University of Massachusetts Amherst

Future forest composition under a changing climate and adaptive forest management in southeastern Vermont

Authors:

Matthias Nevins

Anthony D'Amato

Jane Foster

Publication Type:
Journal Article
Year of Publication:
2021
Secondary Title:
Forest Ecology and Management
ISSN:
03781127
DOI:
10.1016/j.foreco.2020.118527
Pages:
118527
Volume:
479
Year:
2021
Date:
Jan-01-2021
URL:
https://linkinghub.elsevier.com/retrieve/pii/S0378112720312962

Abstract

The uncertainty around future impacts of global environmental change on forest systems has led to a heightened focus on developing alternative management approaches to sustain critical forest ecosystem services. We use a spatially explicit forest landscape simulation model, LANDIS-II, to examine and evaluate a range of long-term effects of current and adaptive forest management under three projected climate scenarios within a forested landscape in southeastern Vermont, USA. We found that land-use legacies and the inertia associated with long-term forest successional trajectories are likely to be the dominant driver of future forest composition and biomass conditions for the next 100 years. Nevertheless, climate is projected to have a greater influence on species composition and aboveground biomass over the next 200 years. Eastern hemlock (Tsuga canadensis) and red spruce (Picea rubens) are likely to experience reductions in aboveground biomass and a compression of relative dominance on the landscape. American beech (Fagus grandifolia) and sugar maple (Acer saccharum) are projected to persist within the landscape and are likely to continue to occupy a prominent compositional position in the forests of this region. Extreme climate warming under RCP 8.5 projections resulted in compositional shifts and reductions in landscape-scale aboveground biomass at the end of the 200 year simulation when compared to RCP 4.5 and current climate projections. These findings highlight the expected lag effects of a changing climate, which present significant challenges and opportunities as managers seek to sustain critical ecosystem services in the region.